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Supplemental information, methods and figures for 

“A large-scale analysis of bioinformatics code on GitHub” by Russell 

et al. 

 

 

Supplemental Section 1​​: Source code and project setup 

 

All original code for this study is in the repository 

https://github.com/pamelarussell/github-bioinformatics. The repository contains a single pipeline 

script, src/pipeline/github_bioinformatics_pipeline.pl, that wraps all code for the study. The 

pipeline script is hereafter referred to as the “Perl pipeline”. The Perl pipeline accepts a JSON 

configuration file. Pipeline steps are selected for a particular run by setting boolean values 

within the configuration file; this triggers other scripts in the repository to be run. A sample 

configuration file is provided as src/pipeline/sample_config.json. The Perl pipeline is not 

intended to be run from start to finish but simply to gather all computational steps in a single 

location for reproducibility. Throughout the Supplemental Information, pointers to source code 

are given by the name in the configuration file that controls the running of that code and 

sometimes by the main script that implements the analysis. Scripts are indicated by their relative 

path within the repository. 

 

Several scripts require the list of repositories of interest, which is stored in a Google Sheet and 

provided as ​Table S4​ and ​Table S5​. See “Authentication” below for how to incorporate the sheet 

into a reproduction of the data and results in the paper. 
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Repository names 

 

Throughout the Supplemental Information, the term “repository name” is used to refer to a 

GitHub username and repository separated by a forward slash, e.g., 

“pamelarussell/github-bioinformatics”. 

 

Authentication 

 

In order to reproduce the data and results in the paper using the Perl pipeline and associated 

code, authentication is required for Google as well as the GitHub API. Anyone wishing to 

reproduce the data and results in the paper needs a Google account and a GitHub account. 

Users will need to set up a project on BigQuery in order for dataset creation to work. The 

Google Sheets containing the repository lists need to be saved in the user’s Google Drive 

account. The Google Sheets containing the repository lists formatted for import into BigQuery 

also need to be saved in the Google Drive account, and BigQuery tables need to be set up that 

contain the data in these sheets. This can be done by first linking a BigQuery table to the sheet, 

then querying for the entire contents of the table and saving as a regular BigQuery table for 

simpler authentication. Google credentials provide access to BigQuery (where the data tables 

are written and stored) as well as Google Sheets (where the repository lists are stored). Google 

credentials are stored in a JSON key. GitHub credentials are stored as an OAuth token. For the 

pipeline, Google and GitHub credentials are defined in the config file, not included in the public 

GitHub repository for the project. R code uses the “bigrquery” package ​[1]​, which prompts for 

https://paperpile.com/c/QhMSNx/RSZOL
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Google login credentials and saves an OAuth token. The GitHub API is not accessed from any 

of the R code. 

 

Reproducibility 

 

All data extracted from the GitHub API, with modifications described in the next paragraphs, are 

available at https://doi.org/10.17605/OSF.IO/UWHX8. 

 

Although all of the repositories studied are public on GitHub and were announced in published 

articles, many do not include explicit open source licenses. Therefore, the actual contents of the 

repositories cannot be included as a public dataset along with this paper. Instead, we have 

recorded the specific Git version of each file so that the exact dataset can be regenerated by 

other individuals. This table, provided as “file_info_main.csv” and “file_info_high_profile.csv”, 

contains the Git URL pointing to the specific record for each file. Readers who wish to 

reproduce the exact dataset for the paper can copy each file info table to a BigQuery table (in a 

respective BigQuery project for the main or high-profile dataset) named “repos:file_info” and 

continue with file content extraction in the Perl pipeline by setting “generate_file_contents” to 

true in the config file (skipping “generate_file_info”, which would create the “repos:file_info” table 

for current versions of repository contents).  

 

Similarly, the GitHub Terms of Service prohibit sharing of personal identifying information 

including names and e-mail addresses. (We used names for the gender analysis.) We have 

published commit records as “commits_main.csv” and “commits_high_profile.csv” with 
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identifying information removed. Each published record includes an API reference for the 

commit so the full record can be reconstructed from the GitHub API if needed. 

 

All of the other data extracted from the GitHub API are also included at 

https://doi.org/10.17605/OSF.IO/UWHX8; these can similarly be uploaded to BigQuery and the 

data extraction steps in the Perl pipeline can be skipped. Readers who wish to generate a 

dataset but do not require the exact dataset used for this paper can follow the entire Perl 

pipeline, which will capture the current state of repositories. 

 

 

 

Supplemental methods 

 

 

Supplemental Section 2​​: Identification of bioinformatics repositories on GitHub 

 

We identified GitHub repositories containing bioinformatics code by (1) identifying published 

journal articles containing mentions of GitHub, (2) manually selecting bioinformatics articles from 

among these results, (3) automatically extracting names of GitHub repositories within the 

articles, and (4) manually curating the GitHub repositories using surrounding context in the 

articles. 

 

Motivation for search strategy 
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We settled on this strategy after several previous iterations brought various issues to light. We 

initially considered searching GitHub itself for the term “bioinformatics”, but quickly realized that 

(1) the resulting set of repositories shared no common benchmark making them comparable to 

one another, such as having reached the point of a publication, and (2) many or most 

bioinformatics repositories do not explicitly mention the term “bioinformatics”. Because of these 

issues, we decided to use repositories that had been prepared and theoretically vetted along 

with peer-reviewed publications; additionally, this choice allowed us to analyze article metadata 

as well. 

 

After deciding to use repositories that had been published along with papers, we attempted 

several automatic search strategies. A PubMed search for the term “GitHub” revealed the fact 

that a large proportion of the search results would not be considered “bioinformatics” articles by 

our community. To give a few very brief examples, non-bioinformatics topics we discovered 

included radiomics, pure statistics, mathematics, and articles about GitHub having no 

connection to biology. We decided that it would be unacceptable to include these 

non-bioinformatics articles. We then attempted to use machine learning to automatically classify 

article abstracts as bioinformatics or not, using a hand-labeled set of hundreds of abstracts. The 

best classifier we trained was approximately 90% accurate and still admitted sufficiently many 

non-bioinformatics articles to be unacceptable. We therefore decided that it would be necessary 

to hand-label each article as bioinformatics or not. We recognized the compromise of this 

decision: we would have to limit the size of the dataset to accommodate hand labeling, but 

believed that this would be preferable to including many irrelevant repositories that could bias 

the analysis. 
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We designed a literature search strategy (described in detail in “Literature Search” below) that 

would be as unbiased as possible while returning a number of results that could be reasonably 

hand-labeled by two members of our group. We identified 2,679 articles containing the term 

“GitHub” in the full text, and labeled 1,950 of these as “bioinformatics”. 

 

We automatically extracted the names of 3,188 GitHub repositories mentioned in the 2,679 

articles (described in “Automatic extraction of repository names from articles” below). Again, we 

quickly realized that many of these repositories should not be included in our dataset (even if 

the article was a bioinformatics article), the most common reason being that authors would 

mention repositories they had had no part in developing. (An important goal of our analysis was 

to analyze repositories along with the paper in which they were first published.) We therefore 

manually labeled each GitHub repository as being part of the work described in the paper or not. 

 

Finally, as briefly mentioned above, part of our analysis depended on identifying the single 

paper that first announced each repository. Therefore, in the small number of cases where a 

repository was mentioned in multiple distinct papers, we used the original article announcing the 

repository (described in “Manual curation of repository names” below). 

 

Table S4 lists the labels associated with each step of this decision process for each article and 

repository name. 

 

 

Literature search 
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The goal of the literature search was to identify and collect articles that mention the term 

"GitHub" in the title, abstract or anywhere in the full text. Because the primary biomedical 

databases (PubMed, Embase) only contain article metadata (title, abstract, etc.) and not full 

text, we took a two-pronged approach. We designed a search strategy that looked for the term 

"GitHub" in the title/abstract, but also included computer programming terminology that could 

indicate the use of "GitHub" in the full text. To identify the relevant proxy language to search for, 

we used three approaches. First, we looked at citations that did indeed mention “GitHub” and 

harvested relevant associated or surrounding language. Second, we ran the search “GitHub” in 

PubReMiner to look for other text or MeSH terms that frequently appeared in citations that 

mention “GitHub”. Finally, we relied on our content knowledge to identify other relevant terms. 

 

Because of the laborious nature of locating and processing large batches of full-text PDFs, we 

designed the literature search to return at most 30,000 citations. Literature searches were 

performed on 20 June 2017 in PubMed and Embase.com. Embase contains MEDLINE citations 

as well as citations unique to Embase. For both searches, the date range was set to 

2008-present because GitHub was launched in 2008. No other limits were applied. The PubMed 

search simply looked for the term "GitHub" in all fields and yielded 1,821 results after 

deduplication. The Embase strategy searched the term "GitHub" in addition to other terms 

related to computer programming and software. This search served the dual purpose of locating 

the term "GitHub" in the title/abstract of Embase-only citations as well as identifying citations in 

both MEDLINE and Embase that had some chance of mentioning GitHub in the full text. The 

Embase search yielded 26,505 results after deduplication. Both searches yielded a combined 

total of 28,326 unique citations. 
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The search performed in Embase was the following: 

  

“((algorithm:ti,ab OR toolkit:ti,ab) AND (code:ti,ab OR software:ti,ab)) OR (analysis:ti,ab AND 

next:ti,ab AND (framework:ti,ab OR pipeline:ti,ab OR software:ti,ab OR tool:ti,ab)) OR 

'command line':ti,ab OR ((framework OR 'freely available' OR pipeline OR 'publicly available' OR 

workflow) NEAR/4 (code OR software)):ti,ab OR github*:ti,ab OR 'open source':ti,ab OR 

'programming language':ti,ab OR (software:ti,ab AND next:ti,ab AND (application:ti,ab OR 

framework:ti,ab OR package:ti,ab OR pipeline:ti,ab OR program:ti,ab OR suite:ti,ab OR 

tool:ti,ab)) OR 'source code':ti,ab OR 'web app*':ti,ab AND [2008-2017]/py” 

  

Due to a searcher error, not identified until after citation processing and analysis, the intended 

adjacency operator "next" was treated as a text word by Embase and “AND”-ed together with 

other search terms within the respective scope. This error did not affect the search for "GitHub" 

in the title/abstract. Rather it required the word "next" to appear with the associated 

computer/software terms. This limited overall search results, but kept the search within the 

manageable 30,000 citation range. 

  

All citations were exported to EndNote X7. EndNote's full-text harvesting tool was used to batch 

harvest PDFs. No manual harvesting of PDFs was performed. 18,764 full-text PDFs were 

located by EndNote. All citations containing "GitHub" in the title/abstract and all located PDFs 

were exported for external programmatic analysis. We identified 2,679 articles containing the 

case-insensitive term “GitHub” somewhere in the full text. 

 

Definition of bioinformatics 
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A detailed list of bioinformatics topic categories was compiled. First, the published scope of the 

journal ​Bioinformatics​ was downloaded on 25 June 2017 from ​[2]​. Each category in the journal 

scope, along with its detailed description, was included. Second, a few additional categories 

were taken from the Wikipedia article on “Bioinformatics” on 25 June 2017 ​[3]​ (stable URL). 

Finally, an additional topic “Pipelines, wrappers, extensions, and utilities” was included to 

capture these software papers. Descriptions of each category taken from their sources are in 

Table S1​. 

 

Manual curation of bioinformatics articles 

 

Each article identified in the literature search that contained the term “GitHub” in the full text was 

manually evaluated to determine if its contents pertained to bioinformatics topics. The set of 

articles was divided into two subsets and each subset was evaluated by one person (R.J. and 

P.R.) due to the large time commitment involved. For each article, the title and abstract were 

examined. The article was classified as “bioinformatics” if the title or abstract treated at least one 

of the topics in the definition of bioinformatics. The results of the manual classification are 

presented in ​Table S2​. 

 

Automatic extraction of repository names from articles 

 

Repository names were automatically extracted from all articles identified in the literature 

search, including those not identified as “bioinformatics”. The script was run through the Perl 

pipeline by setting “extract_repos_from_lit_search” to true in the config file. Briefly, the operation 

https://paperpile.com/c/QhMSNx/bkbSE
https://paperpile.com/c/QhMSNx/b4kQy
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of the script is as follows. The XML files of article metadata exported from EndNote were parsed 

and metadata for all articles were extracted. For each article, first, an attempt was made to 

identify repository names in the abstract by searching for and parsing matches to one of the 

regular expressions "github\.com/([a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+)" or 

"([a-zA-Z0-9_-]+)\.github\.io/([a-zA-Z0-9_-]+)". If repository names were found in the abstract, 

these were returned and no attempt was made to analyze the full text. If no repository names 

were found in the abstract, the full text PDF was analyzed using the Python package pdfminer 

[4]​; matches to the same regular expressions were identified and parsed to extract repository 

names. The script saved the results to a table on BigQuery and this table was saved as a 

Google Sheet. The table is available as ​Table S3​. 

 

Manual curation of repository names 

 

Spreadsheet for manual curation of repository names. 

The final curation is presented as ​Table S4​. To create this table, the manual curation of 

bioinformatics articles was joined to the automatic extraction of repository names from articles to 

identify automatically extracted repository names contained in bioinformatics articles. A Google 

spreadsheet was created containing the join. From that point, this spreadsheet was manually 

adjusted (​Table S4​ contains a sheet “field_definitions” that defines the columns and explains 

which columns have been manually modified). The column “use_repo” in the spreadsheet 

contains the ultimate directive of whether the repository was to be included in the final dataset 

or not, and could be manually set for various reasons described below. The complete definition 

of the logic in this column is provided in “field_definitions”. 

 

https://paperpile.com/c/QhMSNx/fbd74
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Manual deduplication of repository names. 

Duplicate repository names were identified. Duplicates could occur when the same article was 

returned multiple times by the literature search, leading to multiple EndNote records. This could 

also happen if the same repository was mentioned in multiple different articles. In these cases, 

records were manually deduplicated. If the same article was returned from multiple databases, 

the PubMed record was kept and the other records were deleted (it was always possible to keep 

a PubMed record). If the same article was in the same database with two different dates, the 

earlier record was kept in “use_repo” and the later record was not used. In more complex cases, 

such as multiple distinct articles mentioning the same repository, the articles were manually 

examined and at most one article was set to be used in “use_repo”; the article chosen was the 

one originally announcing the repository. 

 

Manual checking and correction of repository names. 

For each repository name in a bioinformatics article, the surrounding context of the abstract or 

article was manually examined to determine if the repository contained code for the article, as 

opposed to the article mentioning an outside repository. This determination was manually 

entered in the column “repo_from_pdf_is_code_for_bioinf_paper” of the spreadsheet provided 

as ​Table S4​. If a repository name had been discovered from the article abstract, only the 

abstract was examined during this manual process; the PDF was not examined. If a repository 

name had been discovered from the full text PDF, the entire PDF was examined. In some 

cases, errors in repository names were discovered during this manual curation process; these 

were manually fixed where possible. (For example, errors in repository names could be caused 

by ambiguously hyphenated line breaks or special formatting such as indented bullets in the 
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PDF, or missing spaces after the repository name in the abstract downloaded from a literature 

database.) 

 

Special issues for PDFs. 

In addition to the repositories automatically detected from the PDF, additional repositories not 

identified by the automatic process were added by searching for the string “github”; these could 

have been missed by the automatic script due to the issues mentioned previously. Therefore, in 

order for any repository names to be included from a PDF, at least one repository name needed 

to have been identified automatically. PDFs for which no repository names were automatically 

identified were not manually examined and therefore were not allowed to contribute any 

repository names to the final dataset. 

 

Special situations during manual curation. 

● In some cases, if multiple repositories were mentioned in an article and it was impossible to 

tell from context whether the repositories were developed by the article authors, we viewed 

the repositories on github.com to evaluate contributors to the repositories. 

● Articles published in the journal ​F1000​ often include pointers to two code repositories: one 

containing stable frozen code at the time of publication and another containing the 

development version. In these cases, the development version was used and the stable 

version at the time of publication was not used, for consistency with other repositories that 

are all theoretically development versions. 

● BioJava ​[5]​ and BioJS ​[6]​ are open source projects that collect multiple components from 

different contributors under a single parent GitHub repository (biojava/biojava and 

biojs/biojs, respectively). Components of these projects were not used because our analysis 

https://paperpile.com/c/QhMSNx/8ee0G
https://paperpile.com/c/QhMSNx/7WfmZ
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is performed at the repository level, and components of these projects are subdirectories 

under a common repository. 

 

Checking validity of repository names 

 

After the manual curation of repository names, a script was run to verify the current existence of 

repositories marked to be used in the final dataset. The script was run in the Perl pipeline by 

setting “check_repo_existence” to true in the config file. The script prints a list of repositories 

whose existence could not be verified through the GitHub API. Most of these turned out to have 

moved or changed names; these repository names were manually corrected. This step also 

revealed more repository names containing errors due to the automatic parsing of the abstract 

or PDF; these were manually corrected. Repositories that could not be found at all were not 

used. After the manual modifications in this step, no issues with repository names were 

identified by the script. 

 

Identification of high-profile bioinformatics repositories 

 

In addition to the repositories identified through the literature search, we curated a set of 

“high-profile” projects: highly respected and well-known tools in the bioinformatics community. 

Most of these projects were not identified in the literature search. In many cases, high-profile 

projects were not hosted on GitHub at the time of publication. These projects also could have 

been absent from the literature search because the papers did not mention GitHub, because the 

papers did not match the heuristics used in the search, or because the code is not publicly 

available. 
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To avoid subjective judgements or omissions of popular tools, we chose to define high-profile 

projects as those generating a high volume of discussion in the leading online forum for 

discussion of bioinformatics topics, Biostars ​[7]​. We accessed Biostars on 10 February 2018, 

compiling a list of standalone software tools that had been tagged in posts at least 100 times. 

We chose to draw the boundary at standalone tools because this provided a clean criterion we 

could use to judge the sometimes ambiguous Biostars tags, but acknowledge that our chosen 

criterion excludes a few popular libraries and conglomerations such as Bioconductor and 

Galaxy. The list included 27 tools. Through a manual web search, we were able to identify a 

primary GitHub repository hosting the code for 21 of these tools. Four tools do not appear to be 

hosted publicly on GitHub, while two tools are included under another repository already in the 

set of 21. In one case, Samtools ​[8]​, the project was spread across multiple GitHub repositories 

and we curated three repositories containing the main code for the project, bringing the number 

of repositories to 23. Three high-profile repositories (alexdobin/STAR, bcgsc/abyss, and 

chrchang/plink-ng) are also in the dataset curated from the literature search; they are included 

in both sets for analysis. We performed a manual search to identify the original publications 

describing each project; we were able to find publications for 21 of the 23 repos, while two 

remain unpublished. Details are presented in ​Table S5​. This set of 23 repositories is referred to 

as the “high-profile” dataset, while the set identified through the literature search is referred to 

as the “main” dataset. 

 

Extraction of article metadata 

 

https://paperpile.com/c/UeUqsO/wexEx
https://paperpile.com/c/QhMSNx/aiXr1
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Metadata for articles associated with each repository were extracted from NCBI databases 

using the RISmed R package ​[9]​ with the script src/R/ncbi/paper_metadata_eutils.R. The script 

was run through the Perl pipeline separately for the main and high-profile datasets by setting 

“query_eutils_article_metadata” to true in the config file. Metadata retrieved include database 

IDs, journal information, funding information, relevant dates, article abstract, and number of 

citations in PubMed Central, the National Library of Medicine’s archive of open access full-text 

biomedical and life sciences articles. 

 

 

Supplemental Section 3​​: Extraction of repository data from GitHub API 

 

Several types of data were extracted from the GitHub REST API v3 ​[10]​; each is described in a 

subsection below. These scripts were run separately for the main and high-profile datasets; 

each dataset was stored in a separate BigQuery project. The BigQuery projects and empty 

datasets within each project were created manually in the BigQuery web interface. Data for the 

high-profile dataset were extracted approximately four months after the main dataset. 

 

Workflow components common to all data types 

 

Python scripts were used to obtain each type of data. All scripts use the gspread library ​[11]​ to 

read the list of repository names from the Google Sheet containing the manual curation of 

repositories (​Table S4​). All scripts make Curl requests to the GitHub API using the PycURL 

library ​[12]​ and parse the JSON responses to convert information to flat records. All scripts push 

data to tables in Google BigQuery using the BigQuery-Python library ​[13]​. 

https://paperpile.com/c/QhMSNx/90pMK
https://paperpile.com/c/QhMSNx/yGyFW
https://paperpile.com/c/QhMSNx/0is9T
https://paperpile.com/c/QhMSNx/yTakO
https://paperpile.com/c/QhMSNx/xBrNz
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Repository-level metrics 

 

Repository-level metrics were extracted from the GitHub Repositories API ​[10]​ and pushed to a 

BigQuery table by the script src/python/gh_api_repo_metrics.py. The script was run through the 

Perl pipeline by setting “generate_repo_metrics” to true in the config file. Repository-level 

metrics include (1) repository name, (2) GitHub API URL for the repository, (3) HTML URL for 

the repository, (4) repository description, (5) whether the repository is a fork, (6) number of 

stargazers, (7) number of watchers (legacy endpoint that now returns the number of stargazers), 

(8) number of forks, (9) number of open issues, (10) number of subscribers (users who have 

subscribed to notifications; previously known as “watchers”), (11) SHA-1 hash of the most 

recent commit reference to the master branch, and (12) time at which the information was 

accessed. 

 

File information 

 

Information on individual files contained in each repository was extracted from the GitHub 

Contents API ​[10]​ and pushed to a BigQuery table by the script src/python/gh_api_file_info.py. 

The script was run through the Perl pipeline by setting “generate_file_info” to true in the config 

file. Recursive requests were constructed in order to access the entire directory structure of 

each repository. Information for regular files and symbolic links was retrieved. Submodules were 

not included because these often contain code not developed by the authors of the main 

repository. Information retrieved for each file includes (1) repository name, (2) file name, (3) file 

path, (4) file SHA-1 hash, (5) file size, (6) GitHub API URL for the file, (7) HTML URL for the file, 

https://paperpile.com/c/QhMSNx/yGyFW
https://paperpile.com/c/QhMSNx/yGyFW
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(8) Git URL for the file, (9) download URL for the file, (10) file type, (11) SHA-1 hash of the most 

recent commit reference to the master branch, and (12) time at which the information was 

accessed. 

 

File creation dates 

 

Initial commit timestamps for each file were extracted from the GitHub Repositories API ​[10]​ and 

pushed to a BigQuery table by the script src/python/gh_api_file_init_commit.py. The script was 

run through the Perl pipeline by setting “generate_file_init_commits” to true in the config file. 

Commits affecting each file were accessed via the repository name and path as stored in the file 

information table; the oldest time at which a committer committed the file was stored. 

 

File contents 

 

Contents of individual files were extracted from the GitHub Repositories API ​[10]​ and pushed to 

a BigQuery table by the script src/python/gh_api_file_contents.py. The script was run through 

the Perl pipeline by setting “generate_file_contents” to true in the config file. File contents were 

accessed via their Git URL as stored in the file information table, so that records in the two 

tables refer to exactly the same versions of each file. This was important due to the duration of 

time needed to extract all the file contents. Information retrieved for each file includes (1) 

repository name, (2) file name, (3) file path, (4) file SHA-1 hash, (5) Git URL for the file, (6) file 

contents, and (7) time at which the information was accessed. File contents were decoded from 

the Base64 encoding returned by the GitHub API. Files whose contents exceed 999KB in size 

https://paperpile.com/c/QhMSNx/yGyFW
https://paperpile.com/c/QhMSNx/yGyFW
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were included in the results table but contents were marked as “null” due to the 1MB row size 

limit in BigQuery and also the fact that almost none of these files contain source code.  

 

Commits 

 

Commit records were extracted from the GitHub Repositories API ​[10]​ and pushed to a 

BigQuery table by the script src/python/gh_api_commits.py. The script was run through the Perl 

pipeline by setting “generate_commits” to true in the config file. Attributes extracted for each 

commit were (1) repository name, (2) commit SHA, (3) commit API URL, (4) commit HTML URL, 

(5) commit comments URL, (6) commit message, (7) comment count, (8) author login, (9) author 

ID, (10) author name, (11) author email, (12) author commit date, (13) author API URL, (14) 

author HTML URL, (15) author type, (16) committer login, (17) committer ID, (18) committer 

name, (19) committer email, (20) committer commit date, (21) committer API URL, (22) 

committer HTML URL, (23) committer type, (24) SHA-1 hash of the most recent commit 

reference to the master branch, and (25) time at which the information was accessed. The 

commit author and committer may be different if the author submitted the commits via a pull 

request. Only commits to the default branch (usually “master”) were included. 

 

Licenses 

 

Repository licenses were extracted from the GitHub Repositories API ​[10]​ and pushed to a 

BigQuery table by the script src/python/gh_api_licenses.py. The script was run through the Perl 

pipeline by setting “generate_licenses” to true in the config file. For each repository, information 

extracted included (1) repository name, (2) license, (3) SHA-1 hash of the most recent commit 

https://paperpile.com/c/QhMSNx/yGyFW
https://paperpile.com/c/QhMSNx/yGyFW
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reference to the master branch, and (4) time at which the information was accessed. License 

information is returned by the API when it can be detected from the repository’s license file. 

Repositories without a detectable license were recorded as “null” in the BigQuery table. 

 

Note on iterating through files 

 

We needed to pull down the contents of each file from our contents table in BigQuery and save 

it to a local file in order to analyze it with cloc (​Supplemental Section 5​). Although the Google 

Cloud API supports iterating through records in a BigQuery table, there is a limit on record size 

that was exceeded by many of our contents records. Therefore, we exported the contents table 

to multiple CSV files on Google Cloud Storage; our analysis script downloaded these CSV files 

locally one at a time to analyze the subset of files contained therein. Therefore, people utilizing 

our analysis code would need to replicate the process of saving the contents table to multiple 

CSV files in Google Cloud Storage. 

 

 

Supplemental Section 4​​: Topic modeling of article abstracts 

 

We used machine learning to infer topics for abstracts of the articles announcing each 

repository in the main dataset. Abstracts for the single curated article for each repository were 

obtained from the EndNote metadata (see ​Supplemental Section 2​). Treating each abstract as a 

document, we created a latent Dirichlet allocation (LDA) model ​[14]​ using the “topicmodels” R 

package ​[15]​ and following the workflow in ​[16]​. In LDA, the symbol ​β​ refers to the probability of 

a given term being generated from a given topic, and ​γ​ is the probability that a given document 

https://paperpile.com/c/QhMSNx/Kh7wf
https://paperpile.com/c/QhMSNx/5IaNg
https://paperpile.com/c/QhMSNx/7eenc
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comes from a given topic. ​From the LDA model, we identified terms whose ​β​ value for their top 

topic was at least four times larger than the second highest topic. We manually examined the 

top terms for each topic from this list of topic-specialized terms. We tried several values for ​k​ in 

the model (the number of topics) and chose ​k ​= 8 for further analysis due to its maximal 

coherence of concepts within the top terms. We manually assigned a label to each of the eight 

topics that captures a summary of the top terms. We classified each article abstract into one or 

more topics by taking all pairs of abstracts and topics with ​γ​ equal to at least 0.25. The topic 

modeling analysis and figures (​Fig 2​, ​Fig A​, ​Fig B​, ​Fig C​, ​Fig D​) were generated in 

paper/scripts/topics.Rmd. 

 

 

Supplemental Section 5​​: Programming languages 

 

We attempted to identify a programming language, count lines of code and comment, and 

extract comment-stripped source code for each file. The script 

src/python/cloc_and_strip_comments.py calls the tool cloc (version 1.72) ​[17]​ to analyze the 

contents of each file in each repository. The script was run through the Perl pipeline by setting 

“run_cloc” to true in the config file. For each file, cloc attempts to identify the programming 

language, number of lines of code, number of comment lines, number of blank lines, and 

comment-stripped source code. Files with extensions indicating they did not contain source 

code (e.g. “.jpg”, “.pdf”, “.ppt”) were skipped and not run through cloc. Some files with identical 

contents were duplicated in the dataset, usually appearing multiple times in the same repository 

with different paths and/or file extensions. In cases where cloc identified different language or 

line counts for these duplicate files (probably due to file extension heuristics used in cloc), all 

https://paperpile.com/c/QhMSNx/6txDp
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copies of the file were skipped. A similar filtering was performed on the comment-stripped code 

results from cloc. Results from cloc were saved to tables in BigQuery. This information was 

joined to other file metadata with the script src/python/run_bq_queries_analysis.py by setting 

“run_bq_analysis_queries” to true in the config file for the Perl pipeline. 

 

Language execution modes were obtained from ​[18]​. Type systems were obtained from ​[19]​, 

and due to the absence of the popular language R from this table, R was manually added and 

labeled as “dynamic” and “unsafe”. In order for the information to match the programming 

languages assigned to our data by cloc, in some cases language information records were 

copied to match the language names returned by cloc. These tables, provided as ​Table S6​ and 

Table S7​, were saved as Google Sheets. In order to reproduce the results in the paper, the 

tables must be copied to tables in BigQuery using the same procedure described in 

Supplemental Section 1​. 

 

Fig 3​ and ​Fig E​ were generated in paper/scripts/analysis.Rmd, building on analysis performed in 

paper/scripts/repo_features.R. 

 

 

Supplemental Section 6​​: Developer communities 

 

We identified the number of commit authors and outside contributors (commit authors who are 

never committers) in the commit records for each repository. For commit authors, we attempted 

to count unique people by collapsing users with the same name or login, as individuals can 

contribute to a repository under multiple aliases (for example, from multiple devices with 

https://paperpile.com/c/QhMSNx/nuoTs
https://paperpile.com/c/QhMSNx/5v3Ca
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different default name settings). For outside contributors, we counted commit authors whose 

author ID is never a committer ID for the repository. Counts of commit authors and outside 

contributors were calculated in paper/scripts/repo_features.R. The counts of forks, subscribers 

and stargazers were extracted directly from the GitHub API in 

src/python/gh_api_repo_metrics.py by setting “generate_repo_metrics” to true in the config file 

for the Perl pipeline. 

 

 

Supplemental Section 7​​: Gender analysis 

 

Inferring genders 

 

The script src/R/gender/infer_gender.R attempts to infer a gender for each commit author, 

committer, and paper author in the dataset, then pushes the results to a BigQuery table. The 

script was run for the main and high-profile datasets through the Perl pipeline by setting 

“infer_gender” to true in the config file. We used the Genderize.io API ​[20]​, which is a paid 

service above a certain usage rate; an API key is required for the script to function. Genderize 

accepts a first name and optional language and country, and returns a gender call along with 

the estimated probability of correctness. Although many GitHub users provide their geographic 

location as a free-form text field and articles include academic affiliations for authors, we chose 

not to use this information because (1) many developers and researchers do not live in their 

home country, making this information potentially misleading, and (2) it is challenging to convert 

free-form text to uniform country codes. The result of this decision is that we lack gender calls 

for some ambiguous names that could possibly be resolved by adding accurate geographic 

https://paperpile.com/c/QhMSNx/D6xjN
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information. We note that we were only able to obtain author lists for 1,573 articles for the main 

dataset (covering 1,658 repositories) and and 18 articles for the high-profile dataset (covering 

21 repositories) (see Extraction of article metadata), and that some author lists were not usable 

for gender analysis because they list first initials only. We did not use the original EndNote 

citations for author gender because they included first initials only. 

 

We submitted first names (the first word before whitespace) to Genderize and accepted gender 

calls with a worldwide probability of 0.8 or higher. The main dataset contains 13,425 unique 

strings in the “author name” and “committer name” fields of the commit records and the author 

names of articles. Several cleaning steps reduced this to 9,286 strings that were likely to 

represent full names as opposed to other information such as usernames or e-mail addresses. 

Of these, we were able to confidently infer a gender for 7,747 unique names. Similarly, the 

high-profile dataset contains 1,145 unique names, 881 after cleaning, and 775 for which we 

were able to infer a gender. We note that, based on manual observation, there may be a slight 

bias against identifying genders for non-anglophone names. We also note that a few individuals 

appear to be in the dataset more than once with different ways of writing their name, but these 

are very rare. We were able to confidently infer a gender for 83.4% of cleaned names in the 

main dataset and 88.0% of cleaned names in the high-profile dataset. 

 

Analysis of developer and author gender 

 

Code for this analysis is in paper/scripts/gender.Rmd, which also created ​Fig 5​. 

 

Developers, commits, and paper authors by gender 
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For the gender breakdown of developers, we counted unique full names of authors and 

committers, collapsing people with the same name or login, and ignoring other identifying 

information such as email address. Although we could theoretically be falsely collapsing multiple 

individuals with the same name, we find that it is much more common for the same individual to 

exist in the dataset with multiple aliases. For commits, we joined commit records to genders by 

the full name of the commit author, and counted individual commits. For paper authors, we 

counted individual authorships on papers announcing the repositories. 

 

Team composition 

We analyzed team composition for the 504 projects in the main dataset for which we could infer 

a gender for at least 75% of developers (collapsing developers with the same name or login) 

and 75% of paper authors. We analyzed diversity for the 602 repositories in the main dataset for 

which we could infer a gender for at least 75% of developers. We defined team types as “solo 

female” if the team consisted of one woman, “solo male” if the team consisted of one man, “all 

female” if no individuals were identified as male (individuals with no gender call may actually be 

male), “all male” if no individuals were identified as female, “majority female” if more individuals 

were identified as female than male, “majority male” if more individuals were identified as male 

than female, and “equal” if the same number of female and male individuals were identified. 

 

Gender diversity 

We quantified gender diversity using the Shannon index ​[21]​. The Shannon index was originally 

developed to quantify entropy in information theory and has been been widely used across a 

variety of scientific disciplines to measure diversity of categories within a set or population, 

including being used to quantify gender diversity in the social sciences ​[22,23]​. We calculated 

https://paperpile.com/c/QhMSNx/6QyjP
https://paperpile.com/c/QhMSNx/qDqjm+x8fEC
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the Shannon index for gender diversity within developer teams (defined as the set of unique 

individuals contributing to a particular repo) and within commits (defined as the gender of the 

author of each individual commit to a repo, where individual authors are counted once per 

commit). 

 

 

Supplemental Section 8​​: Commit dynamics 

 

We defined project duration as the time span between the first and last commit timestamps 

(author commit date) for the repo at the time we extracted the data. This was accomplished by 

the script src/python/run_bq_queries_analysis.py. The script was run through the Perl pipeline 

by setting “run_bq_analysis_queries” to true in the config file. We identified the initial commit 

time for each file by taking the earliest timestamp of all commits touching the file; this was 

accomplished with the script src/python/gh_api_file_init_commit.py by setting 

“generate_file_init_commits” to true in the config file. Metrics describing monthly activity (mean 

commits per month, max consecutive months with and without commits, mean new files per 

month) are with respect to the number of months in the project duration. These were calculated 

in paper/scripts/repo_features.R. ​Fig 6​ was created in paper/scripts/analysis.Rmd. 

 

 

Supplemental Section 9​​: Proxy for project impact 

 

We defined the variable “commits after publication” to be true if the latest commit timestamp at 

the time we accessed the data was after the day the associated article appeared in PubMed. 
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Articles were identified and article metadata were extracted as described in ​Supplemental 

Section 2​. Repository data were extracted from the GitHub API as described in ​Supplemental 

Section 3​. ​Fig 7​ was created in paper/scripts/analysis.Rmd. The variables displayed in each 

panel were calculated in paper/scripts/repo_features.R. 

 

 

 

Supplemental figures 
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Fig A. Topic modeling of article abstracts in the main dataset.​​ The results of a topic 

modeling analysis of article abstracts for the main dataset are shown. We treated each abstract 

as a document and created an eight-topic latent Dirichlet allocation model ​[14]​. ​β​ represents the 

probability of a given term being generated from a given topic. The figure shows top terms that 

are sufficiently exclusive to each topic. For each topic, the listed terms have the top ten ​β​ values 

such that ​β​ is at least four times the ​β​ value of the second highest topic for the term. (For 

https://paperpile.com/c/QhMSNx/Kh7wf
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example, the term “data”, which has high ​β ​values for several topics, is excluded.) The reported 

number of repositories for each topic is the number of articles whose abstract has a ​γ​ value 

(probability of coming from the topic) of at least 0.25; articles may be associated with more than 

one topic. The topic labels were designated manually after examining the top terms. The figure 

was created in paper/scripts/topics.Rmd. 

 

 

Fig B. Programming languages and article topics in the main dataset.​​ Each repository is 

associated with the article that announced it. We ran topic modeling on article abstracts; see 
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Supplemental Section 4​. The size of each dot represents the total number of bytes of code in 

repositories in the main dataset whose corresponding article is associated with the given topic. 

Only languages included in at least 50 main repositories are displayed. Articles can be 

associated with more than one topic; in that case, the code is counted separately for each topic. 

The figure was created in paper/scripts/topics.Rmd. 
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Fig C. Article topics and journals in the main dataset.​​ The size of each dot represents the 

number of articles published in the given journal that are associated with the given topic. Only 

the ten most common journals are included. Articles can be associated with more than one 

topic; in that case, the journal is counted for each topic. ​The figure was created in 

paper/scripts/topics.Rmd. 
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Fig D. Article topics by year in the main dataset. ​​For each repository, the year of the first 

commit to the repository and the year the associated paper appeared in PubMed are shown. 

Articles associated with multiple topics are included in the plot for each topic. ​The figure was 

created in paper/scripts/topics.Rmd. 
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Fig E. Amount of code by programming language.​​ The total amount of code by programming 

language is shown for main and high-profile repositories. The amount of code is the total size in 

bytes of all files identified with the language by cloc (see Methods). Only languages included in 

at least 50 main repositories are displayed. The large amount of code in C and C++ headers for 

the main repositories is largely due to two repositories that contain entire copies of the Boost 

C++ libraries ​[24]​ within the repo; this accounts for nearly half of the ~500Mb of code reported 

here. ​The figure was created in paper/scripts/analysis.Rmd. 

 

 

https://paperpile.com/c/QhMSNx/4WfKl
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Fig F. Language features. ​​We attempted to identify a programming language for each file in 

each repository. Language properties were determined for a subset of languages. The figure 

counts files whose language is associated with a type system and execution mode. Separate 

plots display total file size in bytes and total number of files. ​(​​See ​Supplemental Section 5​.) ​The 

figure was created in paper/scripts/analysis.Rmd. 
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Fig G. Outside commit authors. ​​Various measures of community engagement are plotted 

against the number of outside commit authors (commit authors who are never committers to the 

repository). Outside commit authors are determined from commit records for each repository by 

comparing author IDs to the full set of committer IDs for the repository. Each dot represents one 

repository or a set of repositories with the same values for the variables. We added one to the 

vertical axis variables to facilitate plotting on a log scale due to many zero values. The pearson 

correlation and associated p-value are displayed for each variable versus the number of outside 

commit authors. See ​Fig 2​ legend for the explanation of forks, subscribers and stargazers. ​The 

figure was created in paper/scripts/analysis.Rmd. 
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Fig H. Distribution of teams by gender composition. ​​Developer teams are defined as the set 

of unique commit authors contributing to the default branch of each repository. Paper authors 

are the set of authors listed on the paper announcing the repository. The figure only includes 

515 teams for which we could infer a gender for at least 75% of developers and 75% of paper 

authors. People with no inferred gender are not counted when determining categories for each 

team. ​The figure was created in paper/scripts/gender.Rmd. 
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Fig I. Gender diversity and team size in the main dataset. ​​Developer teams are defined as 

the set of unique commit authors contributing to the default branch of each repository. We only 

include 615 teams for which we could infer a gender for at least 75% of developers. The 

Shannon diversity index is used as a measure of gender diversity within each team. The 

maximum possible value of the Shannon index with two categories is ln(2) = 0.69, which is 

achieved for any team with equal numbers of female and male developers. Developers with no 

inferred gender are not counted when calculating team size or gender diversity. ​The figure was 

created in paper/scripts/gender.Rmd. 
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Fig J. Repository licenses.​​ Licenses were extracted from the GitHub API, which returns a 

license for a repository if the license can be automatically determined from a license file. 

Repositories with no detectable license are counted under “NA”. ​The figure was created in 

paper/scripts/analysis.Rmd. 
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Fig K. Commit message content in the main dataset. ​​We evaluate whether commit 

messages contain error-related keywords as defined in ​[25]​. Commits are presented according 

to their relative timing with respect to the publication of the associated article (negative times are 

before article publication). Each dot represents all commits across the entire dataset for a 

10-day interval with respect to the publication date. The figure shows an increase in overall 

commits approaching paper publication, but no disproportionate increase in bug fix commits as 

defined in ​[25]​. 

 

 

 

 

https://paperpile.com/c/QhMSNx/7wcL
https://paperpile.com/c/QhMSNx/7wcL
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